How do you rationalize the denominator 7/(sqrt3-sqrt2) ?

2 Answers
May 26, 2015

You can multiply and divide your expression by sqrt(3)+sqrt(2) to get:
7/(sqrt(3)-sqrt(2))*(sqrt(3)+sqrt(2))/(sqrt(3)+sqrt(2))=

in the denominator you have a notable:
(a+b)(a-b)=a^2-b^2

So you get:
(7(sqrt(3)+sqrt(2)))/(3-2)=7(sqrt(3)+sqrt(2))

May 26, 2015

Multiply numerator and denominator by the conjugate (sqrt(3)+sqrt(2)):

7/(sqrt(3)-sqrt(2))

= (7(sqrt(3)+sqrt(2)))/((sqrt(3)-sqrt(2))(sqrt(3)+sqrt(2)))

= (7(sqrt(3)+sqrt(2)))/(sqrt(3)^2-sqrt(2)^2)

= (7(sqrt(3)+sqrt(2)))/(3-2)

= 7(sqrt(3)+sqrt(2))