How do you rationalize the denominator and simplify 1/root3(x^2)?

2 Answers
Oct 17, 2017

1/root(3)(x^2)=color(red)(x^(-4/3))

Explanation:

1/root(3)(x^2)
color(white)("XXX")=1/root(3)(x^2)xxroot(3)(x^2)/root(3)(x^2)xxroot(3)(x^2)/root(3)(x^2)

color(white)("XXX")=((root(3)(x^2))^2)/(x^2)

color(white)("XXX")=(x^(1/3))^2xx`1/(x^2)

color(white)("XXX")=x^(2/3) xx x^(-2)

color(white)("XXX")=x^((2/3-2))

color(white)("XXX")=x^((-4/3))

Oct 17, 2017

See a solution process below:

Explanation:

To rationalize the denominator we must multiply the fraction by the appropriate value of 1:

root(3)(x)/root(3)(x) xx 1/root(3)(x^2) =>

(root(3)(x) xx 1)/(root(3)(x) xx root(3)(x^2)) =>

root(3)(x)/(root(3)(x xx x^2)) =>

root(3)(x)/(root(3)(x^3)) =>

root(3)(x)/x