How do you rationalize the denominator and simplify #root3(3/(2x))#? Algebra Radicals and Geometry Connections Multiplication and Division of Radicals 1 Answer Alan P. Oct 7, 2015 Multiply by #((root(3)(2x))^2)/((root(3)(2x))^2)# to get #(root(3)(12x^2))/(2x# Explanation: #root(3)(3/(2x))# #color(white)("XXX)=root(3)((3/(2x)))*((root(3)(2x))^2)/((root(3)(2x))^2)# #color(white)("XXX)=(root(3)(3) * root(3)(4x^2))/(root(3)(2x) * (root(3)(2x))^2)# #color(white)("XXX)=(root(3)(12x^2))/(2x)# Answer link Related questions How do you simplify #\frac{2}{\sqrt{3}}#? How do you multiply and divide radicals? How do you rationalize the denominator? What is Multiplication and Division of Radicals? How do you simplify #7/(""^3sqrt(5)#? How do you multiply #(sqrt(a) +sqrt(b))(sqrt(a)-sqrt(b))#? How do you rationalize the denominator for #\frac{2x}{\sqrt{5}x}#? Do you always have to rationalize the denominator? How do you simplify #sqrt(5)sqrt(15)#? How do you simplify #(7sqrt(13) + 2sqrt(6))(2sqrt(3)+3sqrt(6))#? See all questions in Multiplication and Division of Radicals Impact of this question 1267 views around the world You can reuse this answer Creative Commons License