How do you simplify 192^(1/6)19216?

1 Answer
Aug 13, 2017

See a solution process below:

Explanation:

First, we can rewrite the expression as:

(64 * 3)^(1/6) => (2^6 * 3)^(1/6) => (2^6)^(1/6) * 3^(1/6)(643)16(263)16(26)16316

We can use these rules of exponents to simplify the 2"'s"2's term:

(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))(xa)b=xa×b and a^color(red)(1) = aa1=a

(2^color(red)(6))^color(blue)(1/6) * 3^(1/6) => 2^(color(red)(6)xxcolor(blue)(1/6)) * 3^(1/6) => 2^color(red)(1) * 3^(1/6) => 2 * 3^(1/6)(26)1631626×16316213162316

If necessary, we can write this in radical form using this rule for exponents:

x^(1/color(red)(n)) = root(color(red)(n))(x)x1n=nx

2 * 3^(1/color(red)(6)) = 2root(color(red)(6))(3)2316=263