How do you simplify 2^(1/4) * 8^(1/4)?

2 Answers
Mar 11, 2018

The simplified expression is 2.

Explanation:

Use these exponent rules to simplify the expression:

x^color(red)m+x^color(blue)n=x^(color(red)m+color(blue)n)

(x^color(red)m)^color(blue)n=x^(color(red)m*color(blue)n)

Now here's the expression. Rewrite 8 as 2^3, then use the exponent rules to simplify:

color(white)=2^(1/4)*8^(1/4)

=2^color(green)(1/4)*(2^color(red)3)^color(blue)(1/4)

=2^color(green)(1/4)*2^(color(red)3*color(blue)(1/4))

=2^color(green)(1/4)*2^(color(blue)(color(red)3/4)

=2^(color(green)(1/4)+color(blue)(color(red)3/4))

=2^(color(blue)((color(green)1color(black)+color(red)3)/4))

=2^(color(blue)(color(brown)4/4)

=2^1

=2

Mar 11, 2018

+- 2

Explanation:

2^(1/4) * 8^(1/4)
color(white)("XXX")=(2 * 8)^(1/4)
color(white)("XXX")=16^(1/4)
color(white)("XXX")=+-root(4)(16)
color(white)("XXX")=+-2