How do you simplify 2 sin 35 cos 352sin35cos35?

1 Answer
May 12, 2015

Use e^(i theta) = cos theta + i sin thetaeiθ=cosθ+isinθ

cos 2theta + i sin 2thetacos2θ+isin2θ

= e^(2 i theta)=e2iθ

= e^(i theta)e^(i theta)=eiθeiθ

= (cos theta + i sin theta)(cos theta + i sin theta)=(cosθ+isinθ)(cosθ+isinθ)

= (cos^2 theta - sin^2 theta) + i (2 cos theta sin theta)=(cos2θsin2θ)+i(2cosθsinθ)

Looking at the coefficients of ii, we get

sin (2 theta) = 2 cos theta sin theta = 2 sin theta cos thetasin(2θ)=2cosθsinθ=2sinθcosθ

So 2 sin 35^o cos 35^o = sin ( 2*35^o ) = sin 70^o2sin35ocos35o=sin(235o)=sin70o