How do you simplify (-2+sqrt8)/(-3-sqrt2)2+832?

1 Answer
Jun 9, 2015

Multiply numerator and denominator by (3-sqrt(2))(32), expand, group, combine and eliminate common factors to get:

(-2+sqrt(8))/(-3-sqrt(2)) = 1-sqrt(2)2+832=12

Explanation:

(-1+sqrt(8))/(-3-sqrt(2))1+832

=(1-sqrt(8))/(3+sqrt(2))=183+2

=(1-sqrt(8))/(3+sqrt(2))*(3-sqrt(2))/(3-sqrt(2))=183+23232

=((1-2sqrt(2))*(3-sqrt(2)))/(3^2-(sqrt(2))^2)=(122)(32)32(2)2

[using the difference of squares identity: a^2-b^2 = (a+b)(a-b)a2b2=(a+b)(ab)]

=(3-sqrt(2)-6sqrt(2)+2(sqrt(2))^2)/(9-2)=3262+2(2)292

=(3-7sqrt(2)+4)/7=372+47

=(7-7sqrt(2))/7=7727

=1-sqrt(2)=12