First, use these rules of exponents to remove the outer exponent:
a = a^color(red)(1)a=a1 and (x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))(xa)b=xa×b
(25b^6)^-1.5 = (25^color(red)(1)b^color(red)(6))^color(blue)(-1.5) = 25^(color(red)(1) xx color(blue)(-1.5))b^(color(red)(6) xx color(blue)(-1.5)) =(25b6)−1.5=(251b6)−1.5=251×−1.5b6×−1.5=
25^-1.5b^-6.525−1.5b−6.5
We can now use this rule of exponents to eliminate the negative exponents:
25^color(red)(-1.5)b^color(red)(-6.5) = 1/(25^color(red)(- -1.5)b^color(red)(- -6.5)) = 1/(25^1.5b^6.5)25−1.5b−6.5=125−−1.5b−−6.5=1251.5b6.5
We can change the fractions to fractions as follows:
1/(25^1.5b^6.5) = 1/(25^(3/2)b^(13/2))1251.5b6.5=12532b132
We can rewrite this expression as:
1/(25^(1/2 xx 3)b^6.5)12512×3b6.5
We can rewrite this as:
1/((25^(1/2))^3b^6.5) = 1/(5^3b^6.5) = 1/(125b^6.5)1(2512)3b6.5=153b6.5=1125b6.5