How do you simplify (25b^6)^-1.5(25b6)1.5?

1 Answer
Apr 29, 2017

See the entire solution process below:

Explanation:

First, use these rules of exponents to remove the outer exponent:

a = a^color(red)(1)a=a1 and (x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))(xa)b=xa×b

(25b^6)^-1.5 = (25^color(red)(1)b^color(red)(6))^color(blue)(-1.5) = 25^(color(red)(1) xx color(blue)(-1.5))b^(color(red)(6) xx color(blue)(-1.5)) =(25b6)1.5=(251b6)1.5=251×1.5b6×1.5=

25^-1.5b^-6.5251.5b6.5

We can now use this rule of exponents to eliminate the negative exponents:

25^color(red)(-1.5)b^color(red)(-6.5) = 1/(25^color(red)(- -1.5)b^color(red)(- -6.5)) = 1/(25^1.5b^6.5)251.5b6.5=1251.5b6.5=1251.5b6.5

We can change the fractions to fractions as follows:

1/(25^1.5b^6.5) = 1/(25^(3/2)b^(13/2))1251.5b6.5=12532b132

We can rewrite this expression as:

1/(25^(1/2 xx 3)b^6.5)12512×3b6.5

We can rewrite this as:

1/((25^(1/2))^3b^6.5) = 1/(5^3b^6.5) = 1/(125b^6.5)1(2512)3b6.5=153b6.5=1125b6.5