How do you simplify -2sqrt15(-3sqrt3+3sqrt5)?

2 Answers
Aug 18, 2017

See a solution process below:

Explanation:

First, multiply each term within the parenthesis by the term outside the parenthesis:

color(red)(-2sqrt(15))(-3sqrt(3) + 3sqrt(5)) =>

(color(red)(-2sqrt(15)) xx -3sqrt(3)) + (color(red)(-2sqrt(15)) xx 3sqrt(5)) =>

(color(red)(-2) xx -3)color(red)(sqrt(15))sqrt(3) + (color(red)(-2) xx 3)color(red)(sqrt(15))sqrt(5) =>

6sqrt(15 xx 3) + (-6)sqrt(15 xx 5) =>

6sqrt(45) - 6sqrt(75)

Now, we can simplify the radicals:

6sqrt(45) - 6sqrt(75) =>

6sqrt(9 xx 5) - 6sqrt(25 xx 3) =>

6sqrt(9)sqrt(5) - 6sqrt(25)sqrt(3) =>

(6 * 3)sqrt(5) - (6 * 5)sqrt(3) =>

18sqrt(5) - 30sqrt(3)

Aug 18, 2017

18 sqrt(5) - 30 sqrt(3)

Explanation:

First, distribute the -2sqrt(15)
You end up with:
6 sqrt(45) - 6 sqrt(75)
You can then factor under the radical.
6sqrt(9*5) - 6sqrt(25*5)
Then, simplify by square rooting the perfect squares.
6*3 sqrt(5) - 6*5 sqrt(3)
Then multiply.
18 sqrt(5) - 30 sqrt(3)