How do you simplify (2sqrt4)/(8sqrt3)2483?

2 Answers
Sep 4, 2016

sqrt3/636

Explanation:

(2sqrt4)/(8sqrt3) = (2xx2)/(8sqrt3) = 1/(2sqrt3)2483=2×283=123

1/(2sqrt3)xxsqrt3/sqrt3 = sqrt3/(2xx3) =sqrt3/6123×33=32×3=36

Sep 4, 2016

(sqrt(3)) / (6)36

Explanation:

We have: (2 sqrt(4)) / (8 sqrt(3))2483

= (2 cdot 2) / (8 sqrt(3))=2283

= (4) / (8 sqrt(3))=483

= (1) / (2 sqrt(3))=123

Now, let's rationalise the denominator by multiplying both the numerator and denominator by sqrt(3)3:

= (1) / (2 sqrt(3)) cdot (sqrt(3)) / (sqrt(3))=12333

= (sqrt(3)) / (2 cdot 3)=323

= (sqrt(3)) / (6)=36