How do you simplify (3sqrt3)/(-2+sqrt6)?

2 Answers
Jul 21, 2017

See a solution process below:

Explanation:

The first step is to rationalize the denominator by multiplying the fraction by the appropriate form of 1:

(3sqrt(3))/(-2 + sqrt(6)) xx (-2 - sqrt(6))/(-2 - sqrt(6)) =>

(3sqrt(3)(-2 - sqrt(6)))/((-2)^2 + (-2 * -sqrt(6)) + (-2 * sqrt(6)) - (sqrt(6))^2) =>

((-2 * 3sqrt(3)) - (sqrt(6) * 3sqrt(3)))/(4 + 0 - 6) =>

(-6sqrt(3) - 3sqrt(6 * 3))/(-2) =>

(-6sqrt(3))/(-2) - (3sqrt(18))/(-2) =>

3sqrt(3) + (3sqrt(9 * 2))/2 =>

3sqrt(3) + (3sqrt(9)sqrt(2))/2 =>

3sqrt(3) + (3 * 3sqrt(2))/2 =>

3sqrt(3) + (9sqrt(2))/2

Jul 21, 2017

3sqrt3+(9sqrt2)/2

Explanation:

(3sqrt3)/(-2+sqrt6)

:.-(3sqrt3)/(-2+sqrt6) xx (-2-sqrt6)/(-2-sqrt6)

:.=(-6sqrt3-9sqrt2)/-2

:.=(cancel(-6)^3sqrt3)/cancel(-2)^1-(9sqrt2)/-2

:.=3sqrt3-(9sqrt2)/(-2)

:.=3sqrt3+((-9sqrt2)/1 xx 1/-2)

:.=3sqrt3+(9sqrt2)/2

~~~~~~~~~~~~~~~~~~~~~~~~

check

:.(3sqrt3)/(-2+sqrt6)=11.56011345

:.(-6sqrt3-9sqrt2)/-2=11.56011345

:.3sqrt3+(9sqrt2)/2=11.56011345