How do you simplify (4sqrt7-8sqrt3)(5sqrt7+10sqrt3)(4783)(57+103)?

1 Answer
May 4, 2016

-100100

Explanation:

Expand the brackets using FOIL or multiply each term in the 2nd bracket by each term in the 1st.

4sqrt7(5sqrt7+10sqrt3)-8sqrt3(5sqrt7+10sqrt3)47(57+103)83(57+103)

Noting that : sqrtaxxsqrta=aa×a=a

and from the question here sqrt7xxsqrt7=77×7=7

distribute 1st bracket

rArr(4sqrt7xx5sqrt7)+(4sqrt7xx10sqrt3)=140+40sqrt21(47×57)+(47×103)=140+4021

[" using " sqrtaxxsqrtbhArrsqrtab]"so"sqrt7xxsqrt3=sqrt21[ using a×bab]so7×3=21

distribute 2nd bracket

rArr(-8sqrt3xx5sqrt7)+(-8sqrt3xx10sqrt3)(83×57)+(83×103)

=-40sqrt21-240=4021240

Combining the 2 expansions

140+40sqrt21-40sqrt21-240140+40214021240

[Note : 40sqrt21-40sqrt21=0]40214021=0]

rArr(4sqrt7-8sqrt3)(5sqrt7+10sqrt3)=140-240=-100(4783)(57+103)=140240=100