How do you simplify (5^2/8^2)^(-1/2)?

1 Answer
Feb 20, 2017

See the entire simplification process below:

Explanation:

Use this rule of exponents to simplify this expression:

(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))

(5^color(red)(2)/8^color(red)(2))^color(blue)(-1/2) = 5^(color(red)(2)xxcolor(blue)(-1/2))/8^(color(red)(2)xxcolor(blue)(-1/2)) = 5^-1/8^-1

Next, use these rules for exponents to eliminate the negative exponents:

x^color(red)(a) = 1/x^color(red)(-a) and 1/x^color(red)(a) = x^color(red)(-a)

5^color(red)(-1)/8^color(red)(-1) = 8^color(red)(- -1)/5^color(red)(- -1) = 8^1/5^1

Now, use this rule of exponents to complete the simplification:

a^color(red)(1) = a

8^color(red)(1)/5^color(red)(1) = 8/5