How do you simplify 5sqrt3(6sqrt10-6sqrt3)53(61063)?

1 Answer
Jun 21, 2018

30(sqrt30-3)30(303)

Explanation:

We essentially have the following

color(blue)(5)color(lime)(sqrt3)*color(blue)(6)color(lime)(sqrt10)-color(blue)(5)color(lime)(sqrt3)*color(blue)(6)color(lime)(sqrt3)536105363

Which can be simplified if we multiply the integers and square roots together, respectively. We'll get

color(blue)((5*6))color(lime)(sqrt3sqrt10)-color(blue)((5*6))color(lime)(sqrt3sqrt3)(56)310(56)33

Which simplifies to

color(blue)(30)color(lime)(sqrt30)-color(blue)(30)*color(lime)(3)3030303

=>color(blue)(30)color(lime)(sqrt30)-90303090

Since 3030 has no perfect square factors, we cannot simplify the radical any further. We can factor a 3030 out of both terms, however. We get

30(sqrt30-3)30(303)

Hope this helps!