How do you simplify #(5x-2) (2x-9)#? Algebra Polynomials and Factoring Multiplication of Polynomials by Binomials 1 Answer Alan P. Jul 25, 2016 #10x^2-49x+18# Explanation: Using the distributive property: #color(white)("XXX")color(red)(""(5x-2))color(blue)(""(2x-9))# #color(white)("XXX")=color(red)(5x)color(blue)(""(2x-9))color(red) (-2)color(blue)(""(2x-9))# #color(white)("XXX")=color(green)(10x^2-45x)color(purple)(-4x+18)# #color(white)("XXX")=10x^2-49x+18# Answer link Related questions What is FOIL? How do you use the distributive property when you multiply polynomials? How do you multiply #(x-2)(x+3)#? How do you simplify #(-4xy)(2x^4 yz^3 -y^4 z^9)#? How do you multiply #(3m+1)(m-4)(m+5)#? How do you find the volume of a prism if the width is x, height is #2x-1# and the length if #3x+4#? How do you multiply #(a^2+2)(3a^2-4)#? How do you simplify #(x – 8)(x + 5)#? How do you simplify #(p-1)^2#? How do you simplify #(3x+2y)^2#? See all questions in Multiplication of Polynomials by Binomials Impact of this question 1507 views around the world You can reuse this answer Creative Commons License