How do you simplify (64n^12)^(-1/6)?

1 Answer
Jan 16, 2017

See the entire simplification process below:

Explanation:

First, we will use these rule of exponents to start the simplification process:

(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))

a = a^color(red)(1)

(64n^color(red)(12))^(color(blue)(-1/6)) = (64^color(red)(1)n^color(red)(12))^(color(blue)(-1/6)) =

64^(color(red)(1) xx color(blue)(-1/6))n^(color(red)(12) xx color(blue)(-1/6)) = 64^(-1/6)n^-2

Now we can use this rule for exponents to continue the simplification process:

x^color(red)(a) = 1/x^color(red)(-a)

64^(-1/6)n^-2 = 1/(64^(- -1/6)n^(- -2)) = 1/(64^(1/6)n^2)

Now, to finish we need to know 2^6 = 64 and (-2)^6 = 64 therefore 64^(1/6) = 2 or -2

1/(64^(1/6)n^2) = 1/(2n^2) or 1/(64^(1/6)n^2) = -1/(2n^2)