How do you simplify (7^2/3)^(5/2)?

1 Answer
Apr 15, 2018

( 7 / sqrt (3) )^ 5

Explanation:

First, let's set out the exponent rules that are relevant:

(1) (a ^ b)^c = a ^(bc)

(2) (e * f ) ^g = e^g * f^g

(3) (1 / h) ^ j = h ^-j

Now we first use rule (2):

( 7 ^2 / 3) ^( 5/ 2) = (7 ^2 ) ^ ( 5 / 2 ) * (1 / 3) ^( 5 / 2 )

We can now use rule (3):

(7 ^2 ) ^ ( 5 / 2 ) * (1 / 3) ^( 5 / 2 ) = (7 ^2 ) ^ ( 5 / 2 ) * 3 ^( - 5 / 2 )

We use rule (1) to multiply out the left hand term:

(7 ^2 ) ^ ( 5 / 2 ) * 3 ^( - 5 / 2 ) = 7 ^( 2 * 5 / 2 ) * 3 ^( - 5 / 2 )

= 7 ^ ( 5 ) * 3 ^ (- 5 / 2)

To simplify further we could again use rule (1) and rule (3):

7 ^ ( 5 ) * 3 ^ (- 5 / 2) = ( 7 / 3 ^ (1 / 2) )^ 5

As x^(1/2) -= sqrt (x)

( 7 / 3 ^ (1 / 2) )^ 5 =( 7 / sqrt (3) )^ 5