How do you simplify -8 ^ (2/3) 823?

1 Answer
Aug 11, 2016

-44

Explanation:

Using the color(blue)"laws of exponents"laws of exponents

color(orange)"Reminder " color(red)(|bar(ul(color(white)(a/a)color(black)(a^mxxa^n=a^(m+n))color(white)(a/a)|)))........ (A)

Let's define, generally, the meaning of a^(2/3)

Using (A)

a^(2/3)xxa^(2/3)xxa^(2/3)=a^(6/3)=a^2........ (1)

now a^(2/3)xxa^(2/3)xxa^(2/3)=(a^(2/3))^3........ (2)

Since the 2 expressions are equivalent we can equate them.

rArr(a^(2/3))^3=a^2

Take the color(blue)"cube root" of both sides

rArrcolor(red)(|bar(ul(color(white)(a/a)color(black)(a^(2/3)=root(3)(a^2)=(root(3)(a))^2)color(white)(a/a)|)))

We can now evaluate -8^(2/3)

-8^(2/3)=-1xx(root(3)8)^2=-1xx(2)^2=-1xx4=-4