How do you simplify cos^2 (theta/2) − sin^2 (theta/2)cos2(θ2)sin2(θ2)?

1 Answer
May 17, 2016

costhetacosθ

Explanation:

We will use the following identities:

  • cos(theta/2)=sqrt((1+costheta)/2)cos(θ2)=1+cosθ2
  • sin(theta/2)=sqrt((1-costheta)/2)sin(θ2)=1cosθ2

Thus, substituting these into the expression, we get:

cos^2(theta/2)-sin^2(theta/2)=(sqrt((1+costheta)/2))^2-(sqrt((1-costheta)/2))^2cos2(θ2)sin2(θ2)=(1+cosθ2)2(1cosθ2)2

=(1+costheta)/2-(1-costheta)/2=1+cosθ21cosθ2

=(1+costheta-(1-costheta))/2=1+cosθ(1cosθ)2

=(1-1+costheta+costheta)/2=11+cosθ+cosθ2

=(2costheta)/2=2cosθ2

=costheta=cosθ