How do you simplify cos^2 (theta/2) − sin^2 (theta/2)cos2(θ2)−sin2(θ2)?
1 Answer
May 17, 2016
Explanation:
We will use the following identities:
cos(theta/2)=sqrt((1+costheta)/2)cos(θ2)=√1+cosθ2 sin(theta/2)=sqrt((1-costheta)/2)sin(θ2)=√1−cosθ2
Thus, substituting these into the expression, we get:
cos^2(theta/2)-sin^2(theta/2)=(sqrt((1+costheta)/2))^2-(sqrt((1-costheta)/2))^2cos2(θ2)−sin2(θ2)=(√1+cosθ2)2−(√1−cosθ2)2
=(1+costheta)/2-(1-costheta)/2=1+cosθ2−1−cosθ2
=(1+costheta-(1-costheta))/2=1+cosθ−(1−cosθ)2
=(1-1+costheta+costheta)/2=1−1+cosθ+cosθ2
=(2costheta)/2=2cosθ2
=costheta=cosθ