How do you simplify cos (x+pi/6)+sin(x-pi/3)cos(x+π6)+sin(x−π3)?
1 Answer
Feb 2, 2016
0
Explanation:
Using the following trigonometric identities :
• cos (A + B ) = cosAcosB - sinAsinB .........(1)
• sin (A - B ) = sinAcosB - cosAsinB ...........(2) Applying these to the question :
from(1) :
cos(x + pi/6 ) = cosxcos(pi/6) - sinxsin(pi/6) and using exact values:
=cosx .sqrt3/2 - sinx . 1/2 .......(a) from (2) :
sin(x-pi/3 ) = sinxcos(pi/3) - cosxsin(pi/3) using exact values :
# = sinx1/2 - cosx.sqrt3/2........(b) # combining (a) and (b)
sqrt3/2 cosx - 1/2 sinx + 1/2 sinx - sqrt3/2 cosx = 0