How do you simplify cos(xy)sin(x+y)cot(xy) to trigonometric functions of x and y?

1 Answer
Mar 16, 2018

cos(xy)sin(x+y)cot(xy)=2cos2xsinycosy+2cosxsinxsin2ysin2xsin2y

Explanation:

cos(xy)sin(x+y)cot(xy)

= cos(xy)sin(x+y)cos(xy)sin(xy)

= cos(xy)sin(xy)cos(xy)sin(x+y)sin(x+y)sin(xy)

= cos(xy)(sin(xy)sin(x+y))(sinxcosy+cosxsiny)(sinxcosycosxsiny)

= cos(xy)(sinxcosycosxsinysinxcosycosxsiny)sin2xcos2ycos2xsin2y

= cos(xy)(2cosxsiny)sin2x(1sin2y)(1sin2x)sin2y

= 2cosxsiny(cosxcosy+sinxsiny)sin2xsin2xsin2ysin2y+sin2xsin2y

= 2cos2xsinycosy+2cosxsinxsin2ysin2xsin2y2cos2xsinycosy+2cosxsinxsin2ysin2xsin2y