How do you simplify sin2x+cosx=0 using the double angle identity?

1 Answer
Apr 26, 2018

General solution is x=(2n+1)π2 or x=nπ±(1)n(π6), where n is an integer.
In the interval [0,2π), x{π2,7π6,3p2,11π6}

Explanation:

As sin2x=2sinxcosx, we can write sin2x+cosx=0 as

2sinxcosx+cosx=0

or cosx(2sinx+1)=0

Hence either cosx=0 or 2sinx+1=0 i.e. sinx=12

If cosx=0, x=(2n+1)π2, where n is an integer

and if sinx=12=sin(π6), x=nπ±(1)n(π6)

in the interval [0,2π),

x{π2,7π6,3p2,11π6}