How do you simplify ((sqrt 2) + 2 (sqrt 2) + (sqrt8)) / (sqrt 3)(2)+2(2)+(8)3?

1 Answer
May 4, 2016

(5sqrt(6))/3563

Explanation:

Consider sqrt(8) -> sqrt(2xx2^2)=2sqrt(2)82×22=22

Write the given expression as:

(sqrt(2)+2sqrt(2)+2sqrt(2))/sqrt(3)2+22+223

(5sqrt(2))/sqrt(3)523

But it is not 'good form' to have a root in the denominator. So we need 'get rid' of it if we can.

Multiply by 1 but in the form of 1=sqrt(3)/sqrt(3)1=33

(5sqrt(2))/sqrt(3)xxsqrt(3)/sqrt(3) = (5sqrt(6))/3523×33=563

'~~~~~~~~~~~~~~~~~~~~~~
Note that sqrt(2)xxsqrt(3)=sqrt(2xx3)=sqrt(6)2×3=2×3=6