How do you simplify sqrt(3x^2y^3)/(4sqrt(5xy^3))?

1 Answer
May 21, 2017

See a solution process below:

Explanation:

We can use this rule for dividing radicals to rewrite this expression:

sqrt(a)/sqrt(b) = sqrt(a/b)

sqrt(3x^2y^3)/(4sqrt(5xy^3)) => 1/4sqrt((3x^2y^3)/(5xy^3)) => 1/4sqrt((3x^2color(red)(cancel(color(black)(y^3))))/(5xcolor(red)(cancel(color(black)(y^3))))) =>

1/4sqrt((3x^2)/(5x))

Next, we can use these rules of exponents to simplify the x term:

a^color(red)(1) = a or a = a^color(blue)(1) and x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))

1/4sqrt((3x^2)/(5x)) => 1/4sqrt((3x^color(red)(2))/(5x^color(blue)(1))) => 1/4sqrt((3x^(color(red)(2)-color(blue)(1)))/5) => 1/4sqrt((3x^color(red)(1))/5) =>

1/4sqrt((3x)/5)