How do you simplify (sqrt [6] + 2sqrt [2])(4sqrt[6] - 3sqrt2)(6+22)(4632)?

2 Answers
Jun 28, 2018

12+5sqrt1212+512

Explanation:

Given: (sqrt6+2sqrt2)(4sqrt6-3sqrt2)(6+22)(4632).

Use the "FOIL"FOIL theorem, which states that (a+b)(c+d)=ac+ad+bc+bd(a+b)(c+d)=ac+ad+bc+bd.

So, we get:

=sqrt6*4sqrt6-3sqrt2*sqrt6+2sqrt2*4sqrt6-2sqrt2*3sqrt2=646326+22462232

=4*6-3sqrt12+8sqrt12-6*2=46312+81262

=24-12+5sqrt12=2412+512

=12+5sqrt12=12+512

Jun 28, 2018

color(crimson)(=> 2 (6 - 5 sqrt 3)2(653)

Explanation:

(sqrt 6 + 2 sqrt 2) (4 sqrt 6 - 3 sqrt 2)(6+22)(4632)

=> sqrt 6 * 4 sqrt 6 + 2 sqrt 2 * 4 sqrt 6 - sqrt 6 * 3 sqrt 2 - 2 sqrt 2 * 3 sqrt 2646+22466322232

=> 4 * 6 + 8 sqrt 12 - 3 sqrt 12 - 6 * 246+81231262

=> 24 - 12 + 8 sqrt 12 - 3 sqrt 122412+812312

=> 12 + 5 sqrt (4 * 3)12+543

=> 12 - 10 sqrt 312103

color(crimson)(=> 2 (6 - 5 sqrt 3)2(653)