First, to eliminate the parenthesis, multiply each term within the parenthesis by the term outside the parenthesis:
color(red)(sqrt(3))(2sqrt(5) - 3sqrt(3)) =>√3(2√5−3√3)⇒
(color(red)(sqrt(3)) * 2sqrt(5)) - (color(red)(sqrt(3)) * 3sqrt(3)) =>(√3⋅2√5)−(√3⋅3√3)⇒
2sqrt(3)sqrt(5) - 3sqrt(3)sqrt(3)2√3√5−3√3√3
We can now use this rule for multiplying radicals to simplify the expression:
sqrt(color(red)(a)) * sqrt(color(blue)(b)) = sqrt(color(red)(a) * color(blue)(b))√a⋅√b=√a⋅b
2sqrt(color(red)(3))sqrt(color(blue)(5)) - 3sqrt(color(red)(3))sqrt(color(blue)(3)) =>2√3√5−3√3√3⇒
2sqrt(color(red)(3) * color(blue)(5)) - 3sqrt(color(red)(3) * color(blue)(3)) =>2√3⋅5−3√3⋅3⇒
2sqrt(15) - 3sqrt(9) =>2√15−3√9⇒
2sqrt(15) - (3 * 3) =>2√15−(3⋅3)⇒
2sqrt(15) - 92√15−9