How do you simplify sqrt3(sqrt12-sqrt6)?

1 Answer
Nov 9, 2015

First, expand the product: multiply sqrt(3)with sqrt(12) and with sqrt(6), respectively:

sqrt(3)(sqrt(12) - sqrt(6)) = sqrt(3) * sqrt(12) - sqrt(3) * sqrt(6)

Now, use the rule sqrt(a*b) = sqrt(a) * sqrt(b):

sqrt(3) * sqrt(12) - sqrt(3) * sqrt(6)
= sqrt(3 * 12) - sqrt(3 * 6)
= sqrt(36) - sqrt(18)
= 6 - sqrt(18)

The last one, sqrt(18), can be simplifyed further since 18 = 2 * 9 and 9 = 3^2:

6 - sqrt(18)
= 6 - sqrt(2*9)
= 6 - sqrt(2)*sqrt(9)
= 6 - sqrt(2)*3
= 6 - 3sqrt(2)

I hope that this helped!