How do you simplify (sqrta- sqrtb)/(sqrta+sqrtb)aba+b?

3 Answers
Mar 14, 2018

See a solution process below:

Explanation:

To simplify we need to rationalize the denominator by multiplying by the appropriate form of 11:

(color(red)(sqrt(a)) - color(red)(sqrt(b)))/(color(red)(sqrt(a)) - color(red)(sqrt(b))) xx (sqrt(a) - sqrt(b))/(sqrt(a) + sqrt(b)) =>abab×aba+b

(sqrt(a) - sqrt(b))^2/(color(red)(sqrt(a))sqrt(a) + color(red)(sqrt(a))sqrt(b) - color(red)(sqrt(b))sqrt(a) - color(red)(sqrt(b))sqrt(b)) =>(ab)2aa+abbabb

(sqrt(a) - sqrt(b))^2/(a - b)(ab)2ab

Mar 14, 2018

(sqrta-sqrtb)/(sqrta+sqrtb)aba+b

Multiply both the numerator and denominator by sqrta-sqrtbab

(sqrta-sqrtb)/(sqrta+sqrtb)*(sqrta-sqrtb)/(sqrta-sqrtb)aba+babab

(sqrta-sqrtb)^2/((sqrta)^2-(sqrtb)^2)(ab)2(a)2(b)2

(a+b-2sqrt(ab))/(a-b)a+b2abab

Hope this helps :)

Mar 14, 2018

(a-2sqrt(ab)+b)/(a-b)a2ab+bab

Explanation:

"multiply the numerator/denominator by the "color(blue)"conjugate"multiply the numerator/denominator by the conjugate
"of the denominator"of the denominator

"the conjugate of "sqrta+sqrtb" is "sqrtacolor(red)(-)sqrtbthe conjugate of a+b is ab

"this ensures the denominator is a rational value"this ensures the denominator is a rational value

•color(white)(x)sqrtaxxsqrta=axa×a=a

•color(white)(x)(sqrta+sqrtb)(sqrta-sqrtb)=a-bx(a+b)(ab)=ab

rArr(sqrta-sqrtb)/(sqrta+sqrtb)xx(sqrta-sqrtb)/(sqrta-sqrtb)aba+b×abab

=((sqrta-sqrtb)(sqrta-sqrtb))/((sqrta+sqrtb)(sqrta-sqrtb))=(ab)(ab)(a+b)(ab)

=(a-sqrtab-sqrtab+b)/(a-b)=aabab+bab

=(a-2sqrt(ab)+b)/(a-b)=a2ab+bab