How do you simplify (sqrta- sqrtb)/(sqrta+sqrtb)√a−√b√a+√b?
3 Answers
See a solution process below:
Explanation:
To simplify we need to rationalize the denominator by multiplying by the appropriate form of
Multiply both the numerator and denominator by
Hope this helps :)
Explanation:
"multiply the numerator/denominator by the "color(blue)"conjugate"multiply the numerator/denominator by the conjugate
"of the denominator"of the denominator
"the conjugate of "sqrta+sqrtb" is "sqrtacolor(red)(-)sqrtbthe conjugate of √a+√b is √a−√b
•color(white)(x)sqrtaxxsqrta=a∙x√a×√a=a
•color(white)(x)(sqrta+sqrtb)(sqrta-sqrtb)=a-b∙x(√a+√b)(√a−√b)=a−b
rArr(sqrta-sqrtb)/(sqrta+sqrtb)xx(sqrta-sqrtb)/(sqrta-sqrtb)⇒√a−√b√a+√b×√a−√b√a−√b
=((sqrta-sqrtb)(sqrta-sqrtb))/((sqrta+sqrtb)(sqrta-sqrtb))=(√a−√b)(√a−√b)(√a+√b)(√a−√b)
=(a-sqrtab-sqrtab+b)/(a-b)=a−√ab−√ab+ba−b
=(a-2sqrt(ab)+b)/(a-b)=a−2√ab+ba−b