Simplify.
2sqrt(1/2)+2sqrt2-sqrt82√12+2√2−√8
In order to add or subtract numbers with square roots, the square roots must be the same.
Simplify sqrt8√8 by prime factorization.
2sqrt(1/2)+2sqrt2-sqrt(2xx2xx2)2√12+2√2−√2×2×2
2sqrt(1/2)+2sqrt2-sqrt(2^2xx2)2√12+2√2−√22×2
2sqrt(1/2)+2sqrt2-2sqrt22√12+2√2−2√2
Simplify sqrt(1/2)√12 to (sqrt1)/(sqrt2)√1√2.
2xx(sqrt1)/(sqrt2)+2sqrt2-2sqrt22×√1√2+2√2−2√2
Simplify sqrt1√1 to 11.
2xx1/(sqrt2)+2sqrt2-2sqrt22×1√2+2√2−2√2
Rationalize the denominator by multiplying the numerator and denominator by color(red)(sqrt2√2.
2xx1/(sqrt2)xxcolor(red)(sqrt2)/color(red)(sqrt2)+2sqrt2-2sqrt22×1√2×√2√2+2√2−2√2
Simplify.
(2xxsqrt2)/(sqrt2xxsqrt2)+2sqrt2-2sqrt22×√2√2×√2+2√2−2√2
Simplify.
(2sqrt2)/2+2sqrt2-2sqrt22√22+2√2−2√2
Cancel the 2/222.
(color(red)cancel(color(black)(2))sqrt2)/color(red)cancel(color(black)(2))+2sqrt2-2sqrt2
sqrt2+2sqrt2-2sqrt2
Simplify.
3sqrt2-2sqrt2
Answer.
sqrt2