How do you simplify the expression sqrt(1/5)-sqrt5√15−√5? Algebra Radicals and Geometry Connections Multiplication and Division of Radicals 1 Answer Cri007 Jul 29, 2017 See below. Explanation: sqrt(1/5)-sqrt5=1/sqrt(5)-sqrt5=1/sqrt(5)\cdot\sqrt(5)/sqrt(5)-sqrt5=\sqrt(5)/5-sqrt(5)=(sqrt(5)-5sqrt(5))/5=(-4sqrt(5))/5√15−√5=1√5−√5=1√5⋅√5√5−√5=√55−√5=√5−5√55=−4√55 Answer link Related questions How do you simplify \frac{2}{\sqrt{3}}2√3? How do you multiply and divide radicals? How do you rationalize the denominator? What is Multiplication and Division of Radicals? How do you simplify 7/(""^3sqrt(5)73√5? How do you multiply (sqrt(a) +sqrt(b))(sqrt(a)-sqrt(b))(√a+√b)(√a−√b)? How do you rationalize the denominator for \frac{2x}{\sqrt{5}x}2x√5x? Do you always have to rationalize the denominator? How do you simplify sqrt(5)sqrt(15)√5√15? How do you simplify (7sqrt(13) + 2sqrt(6))(2sqrt(3)+3sqrt(6))(7√13+2√6)(2√3+3√6)? See all questions in Multiplication and Division of Radicals Impact of this question 3756 views around the world You can reuse this answer Creative Commons License