How do you simplify using the half angle formula cos(-(7pi)/12)?

1 Answer
Apr 5, 2018

- sqrt(2 - sqrt3)/2

Explanation:

cos ((-7pi)/12) = cos ((-pi)/12 - (6pi)/12) = sin ((-pi)/12) =
= - sin ((pi)/12)
To find sin ((pi)/12) use trig half angle identity:
sin (t/2) = +- sqrt((1 - cos t)/2)
In this case, cos t = cos ((2pi)/12) = cos ((pi)/6) = sqrt3/2
We get, with (pi/12) being in Quadrant 1,
sin ((pi)/12) = sqrt(1 - sqrt3/2)/2 = sqrt(2 - sqrt3)/2
Finally,
cos ((-7pi)/12) = - sin (pi/12) = - sqrt(2 - sqrt3)/2
Check by calculator.
- sin (pi/12) = - sin 15^@ = - 0.258
- sqrt(2 - sqrt3)/2 = - 0.517/2 = - 0.258. Proved.