To simplify these two terms you multiply each individual term in the left parenthesis by each individual term in the right parenthesis.
(color(red)(x) - color(red)(1))(color(blue)(x^3) + color(blue)(2x^2) + color(blue)(2))(x−1)(x3+2x2+2) becomes:
(color(red)(x) xx color(blue)(x^3)) + (color(red)(x) xx color(blue)(2x^2)) + (color(red)(x) xx color(blue)(2)) - (color(red)(1) xx color(blue)(x^3)) - (color(red)(1) xx color(blue)(2x^2)) - (color(red)(1) xx color(blue)(2))(x×x3)+(x×2x2)+(x×2)−(1×x3)−(1×2x2)−(1×2)
x^4 + 2x^3 + 2x - x^3 - 2x^2 - 2x4+2x3+2x−x3−2x2−2
We can now group and combine like terms:
x^4 + 2x^3 - x^3 - 2x^2 + 2x - 2x4+2x3−x3−2x2+2x−2
x^4 + 2x^3 - 1x^3 - 2x^2 + 2x - 2x4+2x3−1x3−2x2+2x−2
x^4 + (2 - 1)x^3 - 2x^2 + 2x - 2x4+(2−1)x3−2x2+2x−2
x^4 + 1x^3 - 2x^2 + 2x - 2x4+1x3−2x2+2x−2
x^4 + x^3 - 2x^2 + 2x - 2x4+x3−2x2+2x−2