How do you simplify (x - 1)(x^3 + 2x^2 + 2)(x1)(x3+2x2+2)?

1 Answer
Jul 1, 2018

See a solution process below:

Explanation:

To simplify these two terms you multiply each individual term in the left parenthesis by each individual term in the right parenthesis.

(color(red)(x) - color(red)(1))(color(blue)(x^3) + color(blue)(2x^2) + color(blue)(2))(x1)(x3+2x2+2) becomes:

(color(red)(x) xx color(blue)(x^3)) + (color(red)(x) xx color(blue)(2x^2)) + (color(red)(x) xx color(blue)(2)) - (color(red)(1) xx color(blue)(x^3)) - (color(red)(1) xx color(blue)(2x^2)) - (color(red)(1) xx color(blue)(2))(x×x3)+(x×2x2)+(x×2)(1×x3)(1×2x2)(1×2)

x^4 + 2x^3 + 2x - x^3 - 2x^2 - 2x4+2x3+2xx32x22

We can now group and combine like terms:

x^4 + 2x^3 - x^3 - 2x^2 + 2x - 2x4+2x3x32x2+2x2

x^4 + 2x^3 - 1x^3 - 2x^2 + 2x - 2x4+2x31x32x2+2x2

x^4 + (2 - 1)x^3 - 2x^2 + 2x - 2x4+(21)x32x2+2x2

x^4 + 1x^3 - 2x^2 + 2x - 2x4+1x32x2+2x2

x^4 + x^3 - 2x^2 + 2x - 2x4+x32x2+2x2