How do you solve 0 = 4x^3 + 2x-10=4x3+2x−1?
1 Answer
Check there are no rational roots, then use Cardano's method to find the Real and two Complex roots.
Explanation:
Let
By the rational root theorem, any roots of
So the only possible rational roots are:
+-1/4±14 ,+-1/2±12 ,+-1±1
We find
Use Cardano's method, substituting
4u^3 + 4v^3 + 2(6uv+1)(u+v) - 1 = 04u3+4v3+2(6uv+1)(u+v)−1=0
Add the constraint
0 = 4u^3 - 4/(6u)^3 - 1 = 4u^3 - 1/(54u^3) - 10=4u3−4(6u)3−1=4u3−154u3−1
Multiply through by
216(u^3)^2-54(u^3)-1 = 0216(u3)2−54(u3)−1=0
Use the quadratic formula to find:
u^3 = (54+-sqrt(54^2+4*216))/(2*216)u3=54±√542+4⋅2162⋅216
=(54+-sqrt(3780))/432=54±√3780432
=(54+-6sqrt(105))/432=54±6√105432
=(27+-3sqrt(105))/216=27±3√105216
Due to the symmetry of the derivation in
x_1 = 1/6(root(3)(27+3sqrt(105))+root(3)(27-3sqrt(105)))x1=16(3√27+3√105+3√27−3√105)
and Complex roots:
x_2 = 1/6(omega root(3)(27+3sqrt(105))+omega^2 root(3)(27-3sqrt(105)))x2=16(ω3√27+3√105+ω23√27−3√105)
x_3 = 1/6(omega^2 root(3)(27+3sqrt(105))+omega root(3)(27-3sqrt(105)))x3=16(ω23√27+3√105+ω3√27−3√105)
where