1/(2(x-3))+3/(2-x)=5 x
Make the denominators equal:
1/(2(x-3)) xx(2-x)/(2-x) +3/(2-x) xx (2(x-3))/(2(x-3))=5 x
(2-x)/(2(x-3)(2-x)) + (3xx2(x-3))/(2(x-3)(2-x) =5
Now we can add the numerators:
=>( (2-x) + 6(x-3))/(2(x-3)(2-x)) =5
(2-x +6x-18)/(2(x-3)(2-x)) =5
Transposition :
=> (2-x +6x-18) = 5xx2(x-3)(2-x)
=> 5x -16 = 10(x(2-x) -3(2-x)
=> 5x -16 = 10(2x-x^2 -6+ 3x)
=> 5x -16 = 10(5x-x^2 -6)
=> 5x -16 = 50x-10x^2 -60
=> 50x-5x-10x^2 -60+16 = 0
=> -10x^2 +45x -44 =0
= 10x^2 -45x+ 44 = 0
Solve using quadratic formula:
x=( -b +-sqrt(b^2 -4ac))/(2a)
Here a= 10, b= -45 and c= 44
b^2 -4ac = 2025-1760 = 265
We get :
x = 1.436 or x = 3.064