How do you solve 1/(2(x-3))+3/(2-x)=5 x?

1 Answer
Nov 2, 2017

x = 1.436
and
x = 3.064

Explanation:

1/(2(x-3))+3/(2-x)=5 x

Make the denominators equal:

1/(2(x-3)) xx(2-x)/(2-x) +3/(2-x) xx (2(x-3))/(2(x-3))=5 x

(2-x)/(2(x-3)(2-x)) + (3xx2(x-3))/(2(x-3)(2-x) =5

Now we can add the numerators:

=>( (2-x) + 6(x-3))/(2(x-3)(2-x)) =5

(2-x +6x-18)/(2(x-3)(2-x)) =5

Transposition :

=> (2-x +6x-18) = 5xx2(x-3)(2-x)

=> 5x -16 = 10(x(2-x) -3(2-x)

=> 5x -16 = 10(2x-x^2 -6+ 3x)

=> 5x -16 = 10(5x-x^2 -6)

=> 5x -16 = 50x-10x^2 -60

=> 50x-5x-10x^2 -60+16 = 0

=> -10x^2 +45x -44 =0

= 10x^2 -45x+ 44 = 0

Solve using quadratic formula:

x=( -b +-sqrt(b^2 -4ac))/(2a)

Here a= 10, b= -45 and c= 44

b^2 -4ac = 2025-1760 = 265

We get :
x = 1.436 or x = 3.064