How do you solve 1/(x-1)+3/(x+1)=2?

2 Answers
May 25, 2018

x_1=0 and x_2=2

Explanation:

1/(x-1)+3/(x+1)=2

[1*(x+1)+3*(x-1)]/[(x-1)(x+1)]=2

(4x-2)/(x^2-1)=2

4x-2=2*(x^2-1)

x^2-1=2x-1

x^2-2x=0

x*(x-2)=0

Hence x_1=0 and x_2=2

May 25, 2018

x=0, x=2

Explanation:

1/(x-1)+3/(x+1)=2

rArr ((x+1)+3(x-1))/((x-1)(x+1))=2

rArr (x+1+3x-3)/((x-1)(x+1))=2

rArr (4x-2)/((x-1)(x+1))=2

rArr 4x-2=2(x+1)(x-1)

rArr 4x-2=2x+2(x-1)

rArr 4x-2=2x^2-2x+2x-2

rArr 4x-2=2x^2-2

rArr 2x^2-4x=0

rArr 2x(x-2)=0

rArr x-2=0 -> x=2

rArr 2x=0 -> x=0