How do you solve 1/ (x-2) + (2x)/ ((x-2)(x-8)) = x/ (2(x-8)) 1x2+2x(x2)(x8)=x2(x8)?

1 Answer
Apr 22, 2017

Multiply both sides by the least common multiple of the numerators.
Solve the resulting quadratic.
Check.

Explanation:

Given: 1/ (x-2) + (2x)/ ((x-2)(x-8)) = x/ (2(x-8));x!=2,x!=81x2+2x(x2)(x8)=x2(x8);x2,x8

Multiply both sides by 2(x-2)(x-8)2(x2)(x8)

2(x-8) + 2(2x) = x(x-2);x!=2,x!=82(x8)+2(2x)=x(x2);x2,x8

2x-16 + 4x = x^2-2x;x!=2,x!=82x16+4x=x22x;x2,x8

Combine like terms:

0 = x^2-8x+16;x!=2,x!=80=x28x+16;x2,x8

Neither 2 nor 8 are roots, therefore, we drop the restrictions:

0 = x^2-8x+160=x28x+16

The above factors into a perfect square:

(x - 4)^2 = 0(x4)2=0

x = 4x=4

check:

1/ (4-2) + (2(4))/ ((4-2)(4-8)) = 4/ (2(4-8))142+2(4)(42)(48)=42(48)
1/2 + 8/ ((2)(-4)) = 2/(-4)12+8(2)(4)=24
-1/2 = -1/212=12

This checks.