How do you solve 1/(x+3) + 1/(x-3) = 1/(x^2-9)?

1 Answer
May 27, 2015

color(blue)(a^2 - b^2 = (a+b)(a-b)

(x^2-9) = (x+3)(x-3)

the expression given is:
1/(x+3) + 1/(x-3) = 1/(x^2-9)

1/(x+3) + 1/(x-3) = 1/((x+3)(x-3)

(1.(x-3))/((x+3)(x-3)) + (1.(x+3))/((x-3)(x+3)) = 1/((x+3)(x-3)

((x-3)+ (x+3))/((x+3)(x-3)) = 1/((x+3)(x-3))

(2x)/cancel(x^2-9) = 1/cancel(x^2-9)

2x = 1

x =color(blue)( 1/2 is the solution for the expression.