How do you solve (-1)/(x-3)=(x-4)/(x^2-27)?

2 Answers
Jul 30, 2016

x=-3/2 or x=5

Explanation:

In (-1)/(x-3)=(x-4)/(x^2-27), let us multiply each side by (x-3)(x^2-27) to simplify we get

(-1)/(x-3)xx(x-3)(x^2-27)=(x-4)/(x^2-27)xx(x-3)(x^2-27) or

(-1)/cancel((x-3))xxcancel(x-3)(x^2-27)=(x-4)/cancel(x^2-27)xx(x-3)cancel((x^2-27)) or

-1xx(x^2-27)=(x-4)(x-3) or

-x^2+27=x(x-3)-4(x-3) or

-x^2+27=x^2-3x-4x+12 or

-x^2+27-x^2+7x-12=0 or

-2x^2+7x+15=0

2x^2-7x-15=0

2x^2-10x+3x-15=0 or

2x(x-5)+3(x-5)=0 or

(2x+3)(x-5)=0 and hence

ether 2x+3=0 i.e. x=-3/2

or x-5=0 i.e. x=5

Jul 30, 2016

x=5
x=-3/2

Explanation:

-1/(x-3)=(x-4)/(x^2-27
or
-x^2+27=(x-3)(x-4)
or
-x^2+27=x^2-3x-4x+12
or
-x^2+27=x^2-7x+12
or
2x^2-7x-15=0
or
2x^2-10x+3x-15=0
or
2x(x-5)+3(x-5)=0
or
(x-5)(2x+3)=0
or
x-5=0
or
x=5=======Ans 1
or
2x+3=0
or
2x=-3
or
x=-3/2=======Ans 2