How do you solve 14 x ^2+ 57x + 28 = 014x2+57x+28=0?

2 Answers
Oct 9, 2015

x=-7/2x=72 and x=-4/7x=47 are the two solutions. They can be found by the quadratic formula, by factoring, or by completing the square.

Explanation:

(1) For 14x^2+57x+28=014x2+57x+28=0, the quadratic formula gives:

x=(-57pm sqrt(57^2-4*14*28))/(2*14)=(-57pm sqrt(3249-1568))/28x=57±57241428214=57±3249156828

=(-57pm sqrt(1681))/28=(-57 pm 41)/28=57±168128=57±4128

Now (-57+41)/28=-16/28=-4/757+4128=1628=47 and (-57-41)/28=-98/28=-7/2574128=9828=72.

(2) Factoring can also be done as follows:

14x^2+57x+28=0\rightarrow (2x+7)(7x+4)=014x2+57x+28=0(2x+7)(7x+4)=0, which leads to the same answers.

(3) Completing the square can be done as follows. Note that 3249/784=(57/28)^23249784=(5728)2.

14x^2+57x+28=0\rightarrow 14(x^2+57/14 x+3249/784)+28=14*3249/78414x2+57x+28=014(x2+5714x+3249784)+28=143249784

\rightarrow 14(x+57/28)^2=1681/56\rightarrow (x+57/28)^2=1681/78414(x+5728)2=168156(x+5728)2=1681784

\rightarrow x+57/28=pm sqrt(1681/784)= pm 41/28x+5728=±1681784=±4128

\rightarrow x=(-57pm 41)/28x=57±4128

As above, (-57+41)/28=-16/28=-4/757+4128=1628=47 and (-57-41)/28=-98/28=-7/2574128=9828=72.

Oct 9, 2015

Solve: y = 14x^2 + 57x + 28 = 0y=14x2+57x+28=0 (1)

Ans x= -4/7x=47 and x = -7/2x=72

Explanation:

I use the new Transforming Method (Socratic Search)
Transformed equation: y' = x^2 + 57x + 392 = 0 (2).
Both roots are negative. Factor pairs of (392) --> (-2, -196)(-4, -98)(-8, -49). This sum is -57 = -b. Then the 2 real roots of (2) are: -8 and -49.
Therefor, the 2 real roots of original equation (1) are: x1 = -8/14 = -4/7 and x2 = -49/14 = -7/2.

NOTE . Solving by this Transforming Method is simpler and faster because it avoids the lengthy factoring by grouping, or the boring computation with the formula. In addition, it avoids solving the 2 binomials.