2/(x+1)+5/(x-2)=-22x+1+5x−2=−2
hArr(2(x-2)+5(x+1))/((x+1)(x-2))=-2⇔2(x−2)+5(x+1)(x+1)(x−2)=−2
hArr2(x-2)+5(x+1)=-2(x+1)(x-2)⇔2(x−2)+5(x+1)=−2(x+1)(x−2)
hArr2x-4+5x+5=-2(x^2-2x+x-2)⇔2x−4+5x+5=−2(x2−2x+x−2)
hArr7x+1=-2x^2+2x+4⇔7x+1=−2x2+2x+4
hArr2x^2+5x-3=0⇔2x2+5x−3=0
hArr2x^2+6x-x-3=0⇔2x2+6x−x−3=0
hArr2x(x+3)-1(x+3)=0⇔2x(x+3)−1(x+3)=0
hArr(2x-1)(x+3)=0⇔(2x−1)(x+3)=0
Hence either 2x-1=02x−1=0 i.e. x=1/2x=12
or x+3=0x+3=0 i.e. x=-3x=−3