2/(x^2-16x+64)-8/(x-7)
= (2(x-7)-8(x^2-16x+64))/((x^2-2xx8xx x+8^2)(x-7))
= (2x-14-8x^2+128x-512)/((x-8)^2(x-7))
= (-8x^2+130x-526)/((x-8)^2(x-7))
Further, (Ax+B)/(x^2-16x+63)
= (Ax+B)/((x-7)(x-9)), and hence
(-8x^2+130x-526)/((x-8)^2(x-7))=(Ax+B)/((x-7)(x-9))
or ((x-9)(-8x^2+130x-526))/((x-8)^2(x-7)(x-9))=((x-8)^2(Ax+B))/((x-8)^2(x-7)(x-9))
or (x-9)(-8x^2+130x-526)=(x^2-16x+64)(Ax+B)
or -8x^3+130x^2-526x+72x^2-1170x+4734=Ax^3-16Ax^2+64Ax+Bx^2-16Bx+64B
or -8x^3+202x^2-1696x+4734=Ax^3+(-16A+B)x^2+(64A-16B)x+64B
Hence, comparing like terms, we should have
A=-8, -16A+B=202
now putting A=-8 gives B=74
also then though 64A-16B=-512-1184=-1696
and 64B=4736
as the latter is not true
there is no solution.