How do you solve (2sqrt3)/sqrt6?

4 Answers
Jun 19, 2018

(2sqrt(3))/(sqrt(6))=color(blue)(sqrt(2))

Explanation:

(color(lime)2sqrt(3))/(color(magenta)sqrt(6)

color(white)("XXX")=(color(lime)(sqrt(2) * sqrt(2)) * sqrt(3))/(color(magenta)(sqrt(2) * sqrt(3)))

color(white)("XXX")=sqrt(2)

Jun 19, 2018

(2sqrt(3))/(sqrt(6))=(2sqrt(3))/(sqrt(3)sqrt(2))=(2)/(sqrt(2))=sqrt2

Jun 19, 2018

sqrt(2)

Explanation:

(2sqrt3)/sqrt6

rArr (2sqrt3)/sqrt6 xxsqrt6/sqrt6

rArr =(2sqrt(18))/sqrt36

rArr (2*sqrt(9)*sqrt(2) )/(6)

=> ( 6sqrt(2)) / 6

rArr sqrt(2) .

Jun 24, 2018

=>sqrt2

Explanation:

Because of the radical law

sqrtab=sqrta*sqrtb, we can rewrite this expression as

(2sqrt3)/(sqrt2*sqrt3)

Cancelling out common terms

(2cancel(sqrt3))/(sqrt2*cancel(sqrt3)

=>2/sqrt2

The convention is to not have an irrational number in the denominator, so let's multiply the top and bottom by sqrt2.

(2*sqrt2)/(sqrt2)^2

(2sqrt2)/2

(cancel2sqrt2)/cancel2

=>sqrt2

Hope this helps!