How do you solve 2x^2 + 12x= 10 2x2+12x=10 using the quadratic formula?

1 Answer
May 9, 2017

x=-3+-sqrt14x=3±14

Explanation:

first rearrange to the form" "ax^2+bx+c=0 ax2+bx+c=0

we have

2x^2+12x-10=02x2+12x10=0

divide out any common factors to make it simpler to use.

(2x^2+12x-10=0)-:2(2x2+12x10=0)÷2

=>x^2+6x-5=0x2+6x5=0

the formula is

x=(-b+-sqrt(b^2-4ac))/(2a)x=b±b24ac2a

a=1, b=6, c=-5a=1,b=6,c=5

x=(-6+-sqrt(6^2-4xx1xx(-5)))/(2xx1)x=6±624×1×(5)2×1

x=(-6+-sqrt(36+20))/2x=6±36+202

x=(-6+-sqrt56)/2x=6±562

x=-6/2+-sqrt56/2x=62±562

x=-6/2+-2sqrt14/2x=62±2142

:.x=-3+-sqrt14