How do you solve 2x2−4x−5=0 using the quadratic formula?
1 Answer
Jan 18, 2017
Explanation:
2x2−4x−5=0
is of the form:
ax2+bx+c=0
with
This has roots given by the quadratic formula:
x=−b±√b2−4ac2a
x=4±√(−4)2−4(2)(−5)2(2)
x=4±√16+404
x=4±√564
x=4±√22⋅144
x=4±2√144
x=1±√142
Footnote
The quadratic formula is very useful, but is it just a "magical" formula to you, or do you know how to derive it?
Here's one way:
Given:
ax2+bx+c=0
We find:
0=1a(ax2+bx+c)
0=x2+bax+ca
0=x2+2b2ax+b2(2a)2−b2(2a)2+ca
0=(x+b2a)2−b2−4ac4a2
Add
(x+b2a)2=b2−4ac4a2
Take the square root of both sides, allowing for both positive and negative square roots to find:
x+b2a=±√b2−4ac4a2=±√b2−4ac2a
Subtract
x=−b2a±√b2−4ac2a=−b±√b2−4ac2a