Given: color(brown)( (3x+2)/(3x-2) = (4x-7)/(4x+7)
color(blue)("'Getting rid' of the denominators")
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(green)("Multiply both sides by "color(blue)(3x-2))
color(brown)( (3x+2)/(3x-2)color(blue)(xx(3x-2))= (4x-7)/(4x+7)color(blue)(xx(3x-2))
color(brown)( (3x+2)xx color(blue)((3x-2))/((3x-2))=((4x-7)color(blue)((3x-2)))/(4x+7))
but (3x-2)/(3x-2) is another way of writing 1 giving:
(3x+2) xx 1= ((4x-7)(3x-2))/(4x+7)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(green)("Multiply both sides by "color(blue)(4x+7))
color(brown)((3x+2) color(blue)(xx(4x+7))= ((4x-7)(3x-2))/(4x+7)color(blue)(xx(4x+7))
(3x+2)(4x+7)=(4x-7)(3x-2)xx((4x+7))/((4x+7))
But (4x+7)/(4x+7) is another way of writing 1 giving:
color(brown)((3x+2)color(blue)((4x+7))=(4x-7)color(black)((3x-2)))
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(green)("Multiply out the brackets")
color(brown)(3xcolor(blue)((4x+7))+2color(blue)((4x+7)) =4x color(black)((3x-2))-7color(black)((3x-2))
12x^2+21x+8x+14=12x^2-8x-21x+14
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(green)("Collecting like terms")
(12x^2-12x^2)+(21x+8x+8x+21x)=14-14
0x^2 +58x=0
color(green)(x=0)