How do you solve 3x^2-8=03x28=0 using the quadratic formula?

1 Answer
Jul 17, 2017

See a solution process below:

Explanation:

We can rewrite this equation as:

3x^2 + 0x - 8 = 03x2+0x8=0

The quadratic formula states:

For ax^2 + bx + c = 0ax2+bx+c=0, the values of xx which are the solutions to the equation are given by:

x = (-b +- sqrt(b^2 - 4ac))/(2a)x=b±b24ac2a

Substituting 33 for aa; 00 for bb and -88 for cc gives:

x = (-0 +- sqrt(0^2 - (4 * 3 * -8)))/(2 * 3)x=0±02(438)23

x = +- sqrt(0 - (-96))/(6)x=±0(96)6

x = +- sqrt(+96)/(6)x=±+966

x = +- sqrt(16 * 6)/(6)x=±1666

x = +- (sqrt(16) * sqrt(6))/(6)x=±1666

x = +- (4 * sqrt(6))/6x=±466

x = +- (2 * 2 * sqrt(6))/(2 * 3)x=±22623

x = +- (color(red)(cancel(color(black)(2))) * 2 * sqrt(6))/(color(red)(cancel(color(black)(2))) * 3)

x = +- (2sqrt(6))/3