We can rewrite this equation as:
3x^2 + 0x - 8 = 03x2+0x−8=0
The quadratic formula states:
For ax^2 + bx + c = 0ax2+bx+c=0, the values of xx which are the solutions to the equation are given by:
x = (-b +- sqrt(b^2 - 4ac))/(2a)x=−b±√b2−4ac2a
Substituting 33 for aa; 00 for bb and -8−8 for cc gives:
x = (-0 +- sqrt(0^2 - (4 * 3 * -8)))/(2 * 3)x=−0±√02−(4⋅3⋅−8)2⋅3
x = +- sqrt(0 - (-96))/(6)x=±√0−(−96)6
x = +- sqrt(+96)/(6)x=±√+966
x = +- sqrt(16 * 6)/(6)x=±√16⋅66
x = +- (sqrt(16) * sqrt(6))/(6)x=±√16⋅√66
x = +- (4 * sqrt(6))/6x=±4⋅√66
x = +- (2 * 2 * sqrt(6))/(2 * 3)x=±2⋅2⋅√62⋅3
x = +- (color(red)(cancel(color(black)(2))) * 2 * sqrt(6))/(color(red)(cancel(color(black)(2))) * 3)
x = +- (2sqrt(6))/3