How do you solve (3x+4)^(1/3) = -5(3x+4)13=5 and find any extraneous solutions?

1 Answer
Feb 25, 2017

x=-43x=43

Explanation:

color(orange)"Reminder " x^(1/3)=root(3)x Reminder x13=3x

rArr(3x+4)^(1/3)=root(3)(3x+4)(3x+4)13=33x+4

To 'undo' the cube root, color(blue)"cube both sides"cube both sides of the equation.

rArr((3x+4)^(1/3))^3=(-5)^3((3x+4)13)3=(5)3

rArr3x+4=-1253x+4=125

subtract 4 from both sides.

3xcancel(+4)cancel(-4)=-125-4

rArr3x=-129

divide both sides by 3

(cancel(3) x)/cancel(3)=(-129)/3

rArrx=-43

color(blue)"As a check"

Substitute this value into the left side of the equation and if equal to the right side then it is the solution.

"left side "=((3xx-43)+4)^(1/3)=(-125)^(1/3)=-5

rArrx=-43" is the only solution"

There are no extraneous solutions.