How do you solve (3x+4)^(1/3) = -5(3x+4)13=−5 and find any extraneous solutions?
1 Answer
Feb 25, 2017
Explanation:
color(orange)"Reminder " x^(1/3)=root(3)x Reminder x13=3√x
rArr(3x+4)^(1/3)=root(3)(3x+4)⇒(3x+4)13=3√3x+4 To 'undo' the cube root,
color(blue)"cube both sides"cube both sides of the equation.
rArr((3x+4)^(1/3))^3=(-5)^3⇒((3x+4)13)3=(−5)3
rArr3x+4=-125⇒3x+4=−125 subtract 4 from both sides.
3xcancel(+4)cancel(-4)=-125-4
rArr3x=-129 divide both sides by 3
(cancel(3) x)/cancel(3)=(-129)/3
rArrx=-43
color(blue)"As a check" Substitute this value into the left side of the equation and if equal to the right side then it is the solution.
"left side "=((3xx-43)+4)^(1/3)=(-125)^(1/3)=-5
rArrx=-43" is the only solution" There are no extraneous solutions.