How do you solve (3x)/( x-5) = 5 - 5 / (x-5)=15?

1 Answer

No solution

Explanation:

Given equality:

\frac{3x}{x-5}=5-\frac{5}{x-5}=15

\frac{3x}{x-5}=\frac{5x-30}{x-5}=15

1) Consider

\frac{3x}{x-5}=\frac{5x-30}{x-5}

\frac{3x}{x-5}-\frac{5x-30}{x-5}=0

\frac{3x-5x+30}{x-5}=0

\frac{-2x+30}{x-5}=0

-2x+30=0\ \quad (\forall \ x\ne 5)

2x=30

x=15

2) Consider

\frac{3x}{x-5}=15

x=5(x-5)

4x=25

x=25/4

x=6.25

3) Consider

\frac{5x-30}{x-5}=15

5x-30=15(x-5)

10x=45

x=4.5

Since, the values of x in all three cases are different hence the given equality doesn't have any solution