How do you solve #4 2/3b+ 4/5= 2 1/7b-1/5b-1/3 #?

2 Answers

#b=-119/286#

Explanation:

#(4+2/3)b+4/5=(2+1/7)b-1/5b-1/3#

#14/3b+4/5=15/7b-1/5b-1/3#

#14*35b+4*21=15*15b-21b-35#

#490b+84=225b-21b-35#

#490b-204b=-35-84#

#286b=-119#

#b=-119/286#

\0/ here's our answer!

May 10, 2018

#b = -119/286#

Explanation:

First change the mixed numbers to improper fractions:

#4 2/3b +4/5 = 2 1/7b -1/5b -1/3#

#(14b)/3 +4/5 = (15b)/7 -b/5 -1/3#

You can get rid of the fractions by multiplying each term by the LCM of the denominators, which is #3xx5xx7 = 105#

#(color(blue)(cancel105^35xx)14b)/cancel3 +(color(blue)(cancel105^21xx)4)/cancel5 = (color(blue)(cancel105^15xx)15b)/cancel7 -(color(blue)(cancel105^21xx)b)/cancel5 -(color(blue)(cancel105^35xx)1)/cancel3#

This leaves us with an equation without fractions,

#490b +84 = 225b-21b-35#

#490b +84 = 204b-35#

#490b-204b = -35-84#

#286b = -119#

#b = -119/286#