How do you solve 5 /(x^2 + 4x) = 3 / x - 2/(x + 4)5x2+4x=3x2x+4?

1 Answer
Jun 2, 2015

We have : 5/(x^2 + 4x) = 3/x - 2/(x + 4)5x2+4x=3x2x+4.

Let's write all the fractions with the same denominator :

5/(x^2 + 4x) = 3/x - 2/(x + 4)5x2+4x=3x2x+4

5/(x^2 + 4x) = (3*(x+4))/(x*(x+4)) - (2*x)/((x + 4)*x)5x2+4x=3(x+4)x(x+4)2x(x+4)x

5/(x^2 + 4x) = (3*(x+4))/(x^2+4x) - (2*x)/(x^2+4x)5x2+4x=3(x+4)x2+4x2xx2+4x

Now, let's put all the fractions on the left :

5/(x^2 + 4x) = (3x+12)/(x^2+4x) - (2x)/(x^2+4x)5x2+4x=3x+12x2+4x2xx2+4x

5/(x^2 + 4x) - (3x+12)/(x^2+4x) + (2x)/(x^2+4x) = 05x2+4x3x+12x2+4x+2xx2+4x=0

(5-(3x+12)+ (2x))/(x^2+4x) = 05(3x+12)+(2x)x2+4x=0

(5-3x-12+2x)/(x^2+4x) = 053x12+2xx2+4x=0

(-x-7)/(x^2+4x) = 0x7x2+4x=0

-(x+7)/(x^2+4x) = 0x+7x2+4x=0

We can multiply all the equation by -(x^2+4x)(x2+4x) :

x+7 = 0x+7=0

That equation = 0=0 when x+7 = 0 => x=-7x+7=0x=7.